Question 1 |
Two vectors \left[\begin{array}{llll}2 & 1 & 0 & 3\end{array}\right]^{\top} and \left[\begin{array}{llll}1 & 0 & 1 & 2\end{array}\right]^{\top} belong to the null space of a 4 \times 4 matrix of rank 2 . Which one of the following vectors also belongs to the null space?
\left[\begin{array}{llll}1 & 1 & -1 & 1\end{array}\right]^{\top} | |
\left[\begin{array}{llll}2 & 0 & 1 & 2\end{array}\right]^{\top} | |
\left[\begin{array}{llll}0 & -2 & 1 & -1\end{array}\right]^{\top} | |
\left[\begin{array}{llll}3 & 1 & 1 & 2\end{array}\right]^{\top} |
Question 1 Explanation:
Given matrix is 4 \times 4 and rank of matrix is 2 .
Therefore, rank of matrix \neq No. of variables Thus, there two linearly dependent vectors \& two linearly independent vectors are present.
\begin{aligned} & X_{1}=\left[\begin{array}{llll} 2 & 1 & 0 & 3 \end{array}\right]^{\top} \\ & X_{2}=\left[\begin{array}{llll} 1 & 0 & 1 & 2 \end{array}\right]^{\top} \end{aligned}
\therefore \quad X=\mathrm{K}_{1}\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 3\end{array}\right]+\mathrm{K}_{2}\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 2\end{array}\right]
For \mathrm{K}_{1}=1 \text{ and } \mathrm{~K}_{2}=-1
X=\left[\begin{array}{c}1 \\ 1 \\ -1 \\ 1\end{array}\right]=\left[\begin{array}{llll}1 & 1 & -1 & 1\end{array}\right]^{\top}
Therefore, rank of matrix \neq No. of variables Thus, there two linearly dependent vectors \& two linearly independent vectors are present.
\begin{aligned} & X_{1}=\left[\begin{array}{llll} 2 & 1 & 0 & 3 \end{array}\right]^{\top} \\ & X_{2}=\left[\begin{array}{llll} 1 & 0 & 1 & 2 \end{array}\right]^{\top} \end{aligned}
\therefore \quad X=\mathrm{K}_{1}\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 3\end{array}\right]+\mathrm{K}_{2}\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 2\end{array}\right]
For \mathrm{K}_{1}=1 \text{ and } \mathrm{~K}_{2}=-1
X=\left[\begin{array}{c}1 \\ 1 \\ -1 \\ 1\end{array}\right]=\left[\begin{array}{llll}1 & 1 & -1 & 1\end{array}\right]^{\top}
Question 2 |
Let \phi be a scalar field, and \mathbf{u} be a vector field. Which of the following identities is true for div(\phi \mathbf{u}) ?
\operatorname{div}(\phi \mathbf{u})=\phi \operatorname{div}(\mathbf{u})+\mathbf{u} \cdot \operatorname{grad}(\phi) | |
\operatorname{div}(\phi \mathbf{u})=\phi \operatorname{div}(\mathbf{u})+\mathbf{u} \times \operatorname{grad}(\phi) | |
\operatorname{div}(\phi \mathbf{u})=\phi \operatorname{grad}(\mathbf{u})+\mathbf{u} \cdot \operatorname{grad}(\phi) | |
\operatorname{div}(\phi \mathbf{u})=\phi \operatorname{grad}(\mathbf{u})+\mathbf{u} \times \operatorname{grad}(\phi) |
Question 2 Explanation:
div(\phi \mathrm{u})=\phi div(\mu)+ugrad(\phi)
Question 3 |
The closed curve shown in the figure is described by
r=1+\cos \theta, where r=\sqrt{x^{2}+y^{2}} x=r \cos \theta, y=r \sin \theta
The magnitude of the line integral of the vector field F=-y \hat{i}+x \hat{j} around the closed curve is ___(Round off to 2 decimal places).

r=1+\cos \theta, where r=\sqrt{x^{2}+y^{2}} x=r \cos \theta, y=r \sin \theta
The magnitude of the line integral of the vector field F=-y \hat{i}+x \hat{j} around the closed curve is ___(Round off to 2 decimal places).

9.42 | |
6.36 | |
2.45 | |
7.54 |
Question 3 Explanation:
\begin{aligned}
I & =\int_{0}^{2 \pi} \vec{F} \cdot \overrightarrow{d l} \\
& =\int_{0}^{2 \pi}(-y \hat{i}+x)(d x \hat{i}+d y) \\
& =\int_{0}^{2 \pi}(-y d x+x d y)
\end{aligned}
Given : \quad x=r \cos \theta and y=r \sin \theta
\begin{aligned} \therefore I&=\int_{0}^{2 \pi}[(-r \sin \theta)(-r \sin \theta) d \theta+(r \cos \theta)(r \cos \theta) d \theta] \\ &=\int_{0}^{2 \pi} r^{2} d \theta \\ &=\int_{0}^{2 \pi}(1+\cos \theta)^{2} d \theta \\ &=\int_{0}^{2 \pi}\left(1+\cos ^{2} \theta+2 \cos \theta\right) d \theta \\ &=\int_{0}^{2 \pi}\left(1+\frac{1+\cos 2 \theta}{2}+2 \cos \theta\right) \mathrm{d} \theta \\ &=3 \pi=9.425 \end{aligned}
Given : \quad x=r \cos \theta and y=r \sin \theta
\begin{aligned} \therefore I&=\int_{0}^{2 \pi}[(-r \sin \theta)(-r \sin \theta) d \theta+(r \cos \theta)(r \cos \theta) d \theta] \\ &=\int_{0}^{2 \pi} r^{2} d \theta \\ &=\int_{0}^{2 \pi}(1+\cos \theta)^{2} d \theta \\ &=\int_{0}^{2 \pi}\left(1+\cos ^{2} \theta+2 \cos \theta\right) d \theta \\ &=\int_{0}^{2 \pi}\left(1+\frac{1+\cos 2 \theta}{2}+2 \cos \theta\right) \mathrm{d} \theta \\ &=3 \pi=9.425 \end{aligned}
Question 4 |
The value of the integral \iint_{R} x y d x d y over the region R, given in the figure, is ___
(rounded off to the nearest integer).

(rounded off to the nearest integer).

0 | |
1 | |
2 | |
3 |
Question 4 Explanation:

\begin{aligned} I & =\iint_{R} x y d x d y \\ & =\int_{y=0}^{1} \int_{x=-y}^{y} x y d x d y+\int_{y=1}^{2} \int_{x=y-2}^{2-y} x y d x d y \\ & =\int_{0}^{1} y\left(\frac{x^{2}}{2}\right)_{-y}^{y} d y+\int_{1}^{2} y\left(\frac{x^{2}}{2}\right)_{y-2}^{2-y} d y \\ & =0+0=0 \end{aligned}
Question 5 |
The smallest perimeter that a rectangle with area of 4 square units can have is
______ units.
(Answer in integer)
4 | |
6 | |
8 | |
10 |
Question 5 Explanation:

Given \quad B \times L=4
Perimeter (P)=2 B+2 L
perimeter to be smallest possible
\frac{d P}{d B}=0=\frac{d}{d B}\left(2 B+2 \times \frac{4}{B}\right)=0
2-\frac{8}{B^{2}}=0
B=\pm 2 \Rightarrow B=2 \quad L=2
Smallest perimeter =2(B+L)=2(2+2)=8
There are 5 questions to complete.
Download : Linear Algebra handwritten Notes | Reference Books | FREE Video Lecture
In question 27, the limit is tending to 1 instead of 0. Please update it accordingly.
Kindly seperate topic wise in maths also
Please visit our FREE full GATE Mathematics course for all topicwise practice question for GATE 2024. https://practicepaper.in/engineering-mathematics-full-course