Question 1 |
The value of k that makes the complex-valued function
f(z)=e^{-kx}(\cos 2y -i \sin 2y)
analytic, where z=x+iy, is _________. (Answer in integer)
f(z)=e^{-kx}(\cos 2y -i \sin 2y)
analytic, where z=x+iy, is _________. (Answer in integer)
1 | |
2 | |
3 | |
4 |
Question 1 Explanation:
\begin{aligned}
& f(z)=e^{-k x} \cos 2 y-i e^{-k x} \sin 2 y \\
& \text { Suppose }=e^{-k x} \cos 2 y=4(x, y) \\
& =-i e^{-k x} \sin 2 y=v(x, y)
\end{aligned}
If function is analytical then it satisfy the equation
\begin{aligned} & \frac{\partial u}{\partial x}=-k e^{-k x} \cos 2 y &...(i)\\ & \frac{\partial u}{\partial y}=-2 e^{-k x} \sin 2 y &...(ii)\\ & \frac{\partial v}{\partial x}=-k e^{-k x} \sin 2 y &...(iii)\\ & \frac{\partial v}{\partial y}=-2 e^{-k x} \cos 2 y &...(iv) \end{aligned}
Cauchy-Riemann equation \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}
by putting equation (i), (iv) and solve then k=2
If function is analytical then it satisfy the equation
\begin{aligned} & \frac{\partial u}{\partial x}=-k e^{-k x} \cos 2 y &...(i)\\ & \frac{\partial u}{\partial y}=-2 e^{-k x} \sin 2 y &...(ii)\\ & \frac{\partial v}{\partial x}=-k e^{-k x} \sin 2 y &...(iii)\\ & \frac{\partial v}{\partial y}=-2 e^{-k x} \cos 2 y &...(iv) \end{aligned}
Cauchy-Riemann equation \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}
by putting equation (i), (iv) and solve then k=2
Question 2 |
Let w^{4}=16 j. Which of the following cannot be a value of w ?
2 e^{\frac{j 2 \pi}{8}} | |
2 e^{\frac{j \pi}{8}} | |
2 e^{\frac{j 5 \pi}{8}} | |
2 e^{\frac{j 9 \pi}{8}} |
Question 2 Explanation:
w=(2) j^{1 / 4}
w=2(0+j)^{1 / 4}
w=2\left[e^{j(2 n+1) \pi / 2}\right]^{1 / 4} =2\left[e^{j(2 n+1) \pi / 8}\right]
For n=0, w=e^{j \pi / 8}
For n=2, w=2 e^{5 \pi j / 8}
For n=4, w=2 e^{9 \pi j / 8}
w=2(0+j)^{1 / 4}
w=2\left[e^{j(2 n+1) \pi / 2}\right]^{1 / 4} =2\left[e^{j(2 n+1) \pi / 8}\right]
For n=0, w=e^{j \pi / 8}
For n=2, w=2 e^{5 \pi j / 8}
For n=4, w=2 e^{9 \pi j / 8}
Question 3 |
Given z=x+iy,i=\sqrt{-1} is a circle of radius 2 with
the centre at the origin. If the contour C is traversed
anticlockwise, then the value of the integral
\frac{1}{2}\int_{c}^{}\frac{1}{(z-i)(z+4i)}dz is _______(round off to one decimal place).
0.2 | |
0.4 | |
0.6 | |
0.8 |
Question 3 Explanation:
Given contour is a circle at centre (0,0) and radius
2 given function is \frac{1}{(z-i)(z+4i)} here z = i is a
singular point lies now by caucus integral formula

\begin{aligned} &\int \frac{1}{(z-i)(z+4i)}dz=\int \frac{\left ( \frac{1}{z+4} \right )}{z-i}dz=2 \pi i \times f(i)\\ &f(z)=\frac{1}{z+4i}\\ &f(i)=\frac{1}{5i}\\ &2 \pi i \times f(i)=2 \pi i \times \frac{1}{5i}=\frac{2\pi}{5}\\ &\text{Now }\frac{1}{2 \pi}\int_{c}\frac{1}{(z-1)(z+4i)}dz=\frac{1}{2 \pi}+\frac{2 \pi}{5}=\frac{1}{5} \end{aligned}

\begin{aligned} &\int \frac{1}{(z-i)(z+4i)}dz=\int \frac{\left ( \frac{1}{z+4} \right )}{z-i}dz=2 \pi i \times f(i)\\ &f(z)=\frac{1}{z+4i}\\ &f(i)=\frac{1}{5i}\\ &2 \pi i \times f(i)=2 \pi i \times \frac{1}{5i}=\frac{2\pi}{5}\\ &\text{Now }\frac{1}{2 \pi}\int_{c}\frac{1}{(z-1)(z+4i)}dz=\frac{1}{2 \pi}+\frac{2 \pi}{5}=\frac{1}{5} \end{aligned}
Question 4 |
Let R be a region in the first quadrant of the xy plane enclosed by a closed curve C
considered in counter-clockwise direction. Which of the following expressions does
not represent the area of the region R?


\int \int _R dxdy | |
\oint _c xdy | |
\oint _c ydx | |
\frac{1}{2}\oint _c( xdy-ydx) |
Question 4 Explanation:
Using green theorem?s
\oint _cF_1dx+F_2dy=\int \int _R\left ( \frac{\partial F_2}{\partial x} -\frac{\partial F_1}{\partial y}\right )dxdy
Check all the options:
\oint xdy=\int \int _R\left ( \frac{\partial x}{\partial x} -0\right )dxdy=\int \int _Rdxdy
\frac{1}{2}\oint xdy-ydx=\frac{1}{2}\int \int _R(1+1)dxdy=\int \int _Rdxdy
\oint ydx=\int \int _R(-1)dxdy=-\int \int _Rdxdy
Hence, \oint ydx is not represent the area of the region.
\oint _cF_1dx+F_2dy=\int \int _R\left ( \frac{\partial F_2}{\partial x} -\frac{\partial F_1}{\partial y}\right )dxdy
Check all the options:
\oint xdy=\int \int _R\left ( \frac{\partial x}{\partial x} -0\right )dxdy=\int \int _Rdxdy
\frac{1}{2}\oint xdy-ydx=\frac{1}{2}\int \int _R(1+1)dxdy=\int \int _Rdxdy
\oint ydx=\int \int _R(-1)dxdy=-\int \int _Rdxdy
Hence, \oint ydx is not represent the area of the region.
Question 5 |
Consider the following series:
\sum_{n=1}^{\infty }\frac{n^d}{c^n}
For which of the following combinations of c,d values does this series converge?
\sum_{n=1}^{\infty }\frac{n^d}{c^n}
For which of the following combinations of c,d values does this series converge?
c=1,d=-1 | |
c=2,d=1 | |
c=0.5,d=-10 | |
c=1,d=-2 |
Question 5 Explanation:
\begin{aligned}
\Sigma u_n&=\Sigma \frac{n}{2^n}\\
&\text{Ratio test; }\\
\lim_{n \to \infty }\frac{u_{n+1}}{u_n}&=\lim_{n \to \infty }\frac{n+1}{2^{n+1}} \times \frac{2^n}{n}=\frac{1}{2}\\
\frac{1}{2}& \lt 2
\end{aligned}
\therefore By ratio test, \Sigma u_n is convergent.
(A) c=1, d=-1
\Sigma u_n=\Sigma \frac{1}{n} is divergent by P-test
(B) c=0.5, d=-10
\begin{aligned} \Sigma u_n&=\Sigma \frac{n^{-10}}{(0.5)^n}\\ &\text{Ratio test; }\\ \lim_{n \to \infty }\frac{u_{n+1}}{u_n}&=\lim_{n \to \infty }\frac{(n+1)^{-10}}{(0.5)^{n+1}} \times \frac{(0.5)^n}{n^{10}}\\ &=\frac{1}{0.5}=2\\ 2& \gt 1 \end{aligned}
\therefore By ratio test, \Sigma u_n is divergent.
(D) c=1,d=-2 \Sigma u_n=\Sigma \frac{n^{-2}}{(1)^n}=\Sigma \frac{1}{n^2}
\Sigma u_n is convergent by P-test.
\therefore By ratio test, \Sigma u_n is convergent.
(A) c=1, d=-1
\Sigma u_n=\Sigma \frac{1}{n} is divergent by P-test
(B) c=0.5, d=-10
\begin{aligned} \Sigma u_n&=\Sigma \frac{n^{-10}}{(0.5)^n}\\ &\text{Ratio test; }\\ \lim_{n \to \infty }\frac{u_{n+1}}{u_n}&=\lim_{n \to \infty }\frac{(n+1)^{-10}}{(0.5)^{n+1}} \times \frac{(0.5)^n}{n^{10}}\\ &=\frac{1}{0.5}=2\\ 2& \gt 1 \end{aligned}
\therefore By ratio test, \Sigma u_n is divergent.
(D) c=1,d=-2 \Sigma u_n=\Sigma \frac{n^{-2}}{(1)^n}=\Sigma \frac{1}{n^2}
\Sigma u_n is convergent by P-test.
There are 5 questions to complete.
Download : Linear Algebra handwritten Notes | Reference Books | FREE Video Lecture
Que no. 21 incorrect data
We have review it with original paper form official GATE website and found it correct.
Bro you are doing great job these helps me alot ♥️♥️♥️♥️♥️