Engineering Mathematics

Question 1
Numerically integrate, f(x)=10 x-20 x^{2} from lower limit a=0 to upper limit b=0.5. Use Trapezoidal rule with five equal subdivisions. The value (in units,round off to two decimal places) obtained is ____________
A
0.78
B
0.65
C
0.4
D
0.56
GATE CE 2021 SET-2      Numerical Methods
Question 1 Explanation: 
\begin{aligned} y&=10 x-20 x^{2} \\ a&=0, b=0.5, n=5 \\ \text { So, } \qquad \qquad \qquad h&=\frac{b-a}{n}=0.1 \end{aligned}
And

\begin{aligned} I &=\int_{0}^{0.5} f(x) d x=\frac{h}{2}\left[y_{0}+y_{5}+2\left(y_{1}+y_{2}+y_{3}+y_{4}\right)\right] \\ &=\frac{0.1}{2}[0+0+2(0.8+1.2+1.2+0.8)] \\ &=0.40 \end{aligned}
Question 2
For two n-dimensional real vectors P and Q, the operation s(P,Q) is defined as follows:

s(P,Q) = \displaystyle \sum_{i=1}^n (P[i] \cdot Q[i])

Let \mathcal{L} be a set of 10-dimensional non-zero real vectors such that for every pair of distinct vectors P,Q \in \mathcal{L}, s(p,Q)=0. What is the maximum cardinality possible for the set \mathcal{L}?
A
9
B
10
C
11
D
100
GATE CSE 2021 SET-2      Calculus
Question 3
A function is defined in Cartesian coordinate system as f(x, y)=x e^{y}. The value of the directional derivative of the function (in integer) at the point (2,0) along the direction of the straight line segment from point (2,0) to point \left(\frac{1}{2}, 2\right) is _______
A
0.5
B
1
C
1.5
D
2.2
GATE CE 2021 SET-2      Calculus
Question 3 Explanation: 
\begin{aligned} f(x, y)&=x e^{y}\\ \mathrm{P}(2,0) \text{ and } Q\left(\frac{1}{2}, 2\right)\\ \operatorname{grad} f &=\hat{i}\left(e^{y}\right)+\hat{j}\left(x e^{y}\right)+\hat{k}(0) \\ \Rightarrow \qquad \qquad \qquad (\operatorname{grad} f)_{p} &=\hat{i}+2 \hat{j} ]\\ \overline{P Q}&=\left(\frac{1}{2}-2\right) \hat{i}+(2-0) \hat{j}=-\frac{3}{2} \hat{i}+2 \hat{j}\\ \text{Required directional derivative} &=(\text { grad } f)_{P} \widehat{P Q}\\ &=(\hat{i}+2 \hat{j}) \times \frac{\left(-\frac{3}{2} \hat{i}+2 \hat{j}\right)}{\sqrt{\frac{9}{4}+4}}=\frac{\frac{-3}{2}+4}{\sqrt{\frac{25}{4}}} \\ &=\frac{\frac{-3+8}{2}}{\left(\frac{5}{2}\right)}=1 \end{aligned}
Question 4
Find the positive real root of x^3-x-3=0 using Newton-Raphson method. If the starting guess (x_0) is 2, the numerical value of the root after two iterations (x_2) is _______ (round off to two decimal places).
A
1.67
B
1.12
C
2.44
D
3.25
GATE ME 2021 SET-2      Calculus
Question 4 Explanation: 
\begin{aligned} \text { Given, }\qquad\quad f(x) &=x^{3}-x-3, \quad x_{0}=2 \\ f^{\prime}(x)&=3 x^{2}-1\\ \text { Iteration 1: } \quad x_{1}&=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=2-\frac{(8-2-3)}{3(4)-1}=1.72\\ \text { Iteration 2: } \quad x_{2}&=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=1.72-\frac{\left(1.72^{3}-1.72-3\right)}{3(1.72)^{2}-1}=1.67 \end{aligned}
Question 5
Consider the following differential equation
(1+y)\frac{dy}{dx}=y
The solution of the equation that satisfies the condition is y(1)=1 is
A
2ye^y=e^x+e
B
y^2e^y=e^x
C
ye^y=e^x
D
(1+y)e^y=2e^x
GATE ME 2021 SET-2      Differential Equations
Question 5 Explanation: 
\begin{aligned} (1+y) \frac{d y}{d x} &=y \\ \Rightarrow\qquad \left(\frac{1}{y}+1\right) d y &=d x \\ \Rightarrow\qquad \log y+y &=x+c \\ \text { Using, } \qquad y(1) &=1 \\ \quad \log 1+1 &=1+c \quad \Rightarrow c=0 \\ \text { Hence, } \quad \log y+y &=x \\ \Rightarrow\qquad \log y+y \operatorname{loge} &=x \\ \log _{\mathrm{e}}\left(y \cdot e^{y}\right) &=x \\ \Rightarrow\qquad y e^{y} &=e^{x} \end{aligned}
Question 6
Let the superscript T represent the transpose operation. Consider the function f(x)=\frac{1}{2}x^T Qx=r^Tx, \; \text{ where } x \text{ and }r \text{ are }n \times 1 vectors and Q is a symmetric n \times n matrix. The stationary point of f(x) is
A
Q^Tr
B
Q^{-1}r
C
\frac{r}{r^Tr}
D
r
GATE ME 2021 SET-2      Calculus
Question 6 Explanation: 
\begin{aligned} \text{Let}\qquad Q=\left[\begin{array}{ll}a & c \\c & b\end{array}\right], x&=\left[\begin{array}{l}x_{1} \\x_{2}\end{array}\right], R=\left[\begin{array}{l}r_{1} \\r_{2}\end{array}\right] \\ F(x)&=\frac{1}{2}\left(x_{1}, x_{2}\right)\left[\begin{array}{ll}a & c \\c & b\end{array}\right]\left[\begin{array}{l}x_{1} \\x_{2}\end{array}\right]-\left[r_{1} r_{2}\right]\left[\begin{array}{l}x_{1} \\x_{2}\end{array}\right] \\ &=\frac{1}{2}\left[a x_{1}^{2}+b x_{2}^{2}+2 c x_{1} x_{2}\right]-\left[r_{1} x_{1}+r_{2} x_{2}\right]\\ \text{i.e.}\qquad \qquad U\left(x_{1}, x_{2}\right)&=\frac{1}{2} a x_{1}^{2}+\frac{1}{2} b x_{2}^{2}+c_{1} x_{1} x_{2}-r_{1} x_{1}-r_{2} x_{2} \end{aligned}
Now, for critical point, \frac{\partial u}{\partial x_{1}}=0 and \frac{\partial u}{\partial x_{2}}=0
\Rightarrow \quad a_{1} x_{1}+c x_{2}-r_{1}=0 \quad \text { and } c x_{2}+c x_{1}-r_{2}=0
In matrix form we can write it as
\begin{aligned} \left[\begin{array}{ll}a & c \\c & b\end{array}\right]\left[\begin{array}{l} x_{1} \\m_{2}\end{array}\right] &=\left[\begin{array}{l}r_{1} \\ r_{2}\end{array}\right] \\\Rightarrow \qquad Q x &=r \end{aligned}
By multiplying both side by Q^{-1}
x=Q^{-1} r
Question 7
The smallest eigenvalue and the corresponding eigenvector of the matrix \left[\begin{array}{cc} 2 & -2 \\ -1 & 6 \end{array}\right], respectively, are
A
1.55 and \left\{\begin{array}{l} 2.00 \\ 0.45 \end{array}\right\}
B
2.00 and \left\{\begin{array}{l} 1.00 \\ 1.00 \end{array}\right\}
C
1.55 and \left\{\begin{array}{l} -2.55 \\ -0.45 \end{array}\right\}
D
1.55 and \left\{\begin{array}{c} 2.00 \\ -0.45 \end{array}\right\}
GATE CE 2021 SET-2      Linear Algebra
Question 7 Explanation: 
\begin{aligned} A&=\left[\begin{array}{cc} 2 & -2 \\ -1 & 6 \end{array}\right] \Rightarrow|A-\lambda I|=0 \\ \Rightarrow \qquad \lambda&=(4+\sqrt{6}) \text { and }(4-\sqrt{6})\\ A X&=\lambda X\\ (A-\lambda I) X&=0 \end{aligned}
{\left[\begin{array}{cc} 2-(4-\sqrt{6}) & -2 \\ -1 & 6-(4-\sqrt{6}) \end{array}\right] \left[\begin{array}{l} x_{1} \\ x_{2} \end{array}\right] =\left[\begin{array}{l} 0 \\ 0 \end{array}\right]}
\begin{aligned} x_{1}&=\left(\frac{2}{-2+\sqrt{6}}\right) x_{2}\\ \text { Let, } \qquad x_{2}&=K \text { then } x_{1}=\left(\frac{2}{-2+\sqrt{6}}\right) \text { K }\\ \Rightarrow \qquad\left[\begin{array}{l} x_{1} \\ x_{2} \end{array}\right]&=\left[\begin{array}{c} \frac{2}{-2+\sqrt{6}} k \\ k \end{array}\right] \approx\left[\begin{array}{c} 2 \\ -2+\sqrt{6} \end{array}\right]=\left[\begin{array}{l} 2.00 \\ 0.45 \end{array}\right] \end{aligned}
Question 8
The value of \int_{0}^{\pi /2}\int_{0}^{\cos \theta }r \sin \theta dr d\theta is
A
0
B
\frac{1}{6}
C
\frac{4}{3}
D
\pi
GATE ME 2021 SET-2      Calculus
Question 8 Explanation: 
\begin{aligned} I &=\int_{\theta=0}^{\theta=\frac{\pi}{2}} \int_{r=0}^{r=\cos \theta} r \sin \theta d r d \theta \\ &=\int_{\theta=0}^{\frac{\pi}{2}}\left[\frac{r^{2}}{2}\right]_{0}^{\infty \cos \theta} \times \sin \theta d \theta \\ &=\frac{1}{2} \int_{\theta}^{\frac{\pi}{2}} \sin \theta \cdot \cos ^{2} \theta d \theta \\ \text{Let}, \qquad\cos \theta &=t\\ -\sin \theta d \theta &=d t \\ \cos \theta &=t \\ \text{at},\qquad\theta &=\frac{\pi}{2} ; t=0 \\ \theta &=0, t=1 \\ &=\int_{1}^{0} \frac{-t^{2}}{2} d t \\ &=\frac{-1}{2}\left[\frac{t^{3}}{3}\right]_{1}^{0}=\frac{-1}{2} \times\left(\frac{-1}{3}\right) \\ &=\frac{-1}{2}\left[\frac{-1}{3}\right]=\frac{1}{6} \end{aligned}
Question 9
If k is a constant, the general solution of \frac{d y}{d x}-\frac{y}{x}=1 will be in the form of
A
y=x ln(kx)
B
y=k ln(kx)
C
y=x ln(x)
D
y=xk ln(k)
GATE CE 2021 SET-2      Ordinary Differential Equation
Question 9 Explanation: 
\begin{aligned} \frac{d y}{d x}-\frac{y}{x} &=1 \\ \frac{d y}{d x}+P y &=Q \\ P &=-\frac{1}{x}, Q=1 \\ I F &=e^{\int P d x}=e^{\int \frac{-1}{x} d x}=\frac{1}{x} \\ y(I F) &=\int Q(I F) d x+c \\ y\left(\frac{1}{x}\right) &=\int 1 \cdot \frac{1}{x} d x+\ln k \\ y &=x \ln (x k) \end{aligned}
Question 10
Suppose that P is a 4x5 matrix such that every solution of the equation Px=0 is a scalar multiple of \begin{bmatrix} 2 & 5 & 4 &3 & 1 \end{bmatrix}^T. The rank of P is _______
A
1
B
2
C
3
D
4
GATE CSE 2021 SET-2      Linear Algebra


There are 10 questions to complete.

Download : Linear Algebra handwritten Notes | Reference Books | FREE Video Lecture

Go the Full Course for Engineering Mathematics

3 thoughts on “Engineering Mathematics”

  1. OK!… You Guys Are Amazing!!!

    So much content at one place!!!
    just please don’t make it paid version… people will always need this.

    simply incredible!!

    Reply

Leave a Comment

Like this FREE website? Please share it among all your friends and join the campaign of FREE Education to ALL.