GATE CE 2014 SET-1


Question 1
\lim_{x\rightarrow \infty }\left ( \frac{x+\sin x}{x} \right ) equals to
A
-\infty
B
0
C
1
D
\infty
Engineering Mathematics   Calculus
Question 1 Explanation: 
\begin{aligned}\text{Put } x= \frac{1}{h} & \text{ as } x\rightarrow \infty \: \Rightarrow \: h\rightarrow 0 \\ \lim_{x\rightarrow \infty }\left ( \frac{x+\sin x}{x} \right )&=\lim_{h\rightarrow 0}\left ( \frac{\frac{1}{h}+\sin \frac{1}{h}}{\frac{1}{h}} \right ) \\ &=\lim_{h\rightarrow 0}\: 1+\left ( \frac{\sin \frac{1}{h}}{\frac{1}{h}} \right )=1 \end{aligned}
Question 2
Given the matrices J=\begin{bmatrix} 3 &2 &1 \\ 2 &4 &2 \\ 1 &2 &6 \end{bmatrix} and K=\begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix} , the product K^{T}JK is________
A
12
B
23
C
45
D
54
Engineering Mathematics   Linear Algebra
Question 2 Explanation: 
\begin{aligned} J&=\begin{bmatrix} 3 & 2 & 1\\ 2 & 4 & 2\\ 1 & 2 & 6 \end{bmatrix} \\ K&=\begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix} \\ K^{T}\: JK&=\begin{bmatrix} 1 & 2 & -1 \end{bmatrix}\begin{bmatrix} 3 & 2 & 1\\ 2 & 4 & 2\\ 1 & 2 & 6 \end{bmatrix}\begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix} \\ &=\begin{bmatrix} 6 & 8 &-1 \end{bmatrix}\begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix}\\ &=6+16+1=23\end{aligned}


Question 3
The probability density function of evaporation E on any day during a year in a watershed is given by

f(E)=\left\{\begin{matrix} \frac{1}{5}&0\leq E\leq 5\; mm/day\\ 0& \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! otherwise \end{matrix}\right.

The probability that E lies in between 2 and 4 mm/day in a day in the watershed is (in decimal) _____________
A
0.2
B
0.4
C
0.8
D
0.6
Engineering Mathematics   Probability and Statistics
Question 3 Explanation: 
f\left ( E \right )=\begin{cases} \frac{1}{5} & \text{ if } \; 0\leq E\leq mm/day \\ 0 & \; Otherwise \end{cases}
P\left ( 2\lt E\lt 4 \right )
\begin{aligned} &=\int_{2}^{4}f\left ( E \right )dE=\int_{2}^{4}\frac{1}{5}dE=\frac{1}{5}\left [ E \right ]_{2}^{4} \\ &=\frac{1}{5}\left ( 4-2 \right )=\frac{2}{5}=0.4 \end{aligned}
Question 4
The sum of Eigen values of the matrix, [M] is
where \left [ M \right ]=\begin{bmatrix} 215 &650 &795\\ 655 &150 &835 \\ 485 &355 &550 \end{bmatrix}
A
915
B
1355
C
1640
D
2180
Engineering Mathematics   Linear Algebra
Question 4 Explanation: 
Sum of eigen values = trace of matrix
=215+150+550 =915
Question 5
With reference to the conventional Cartesian (x, y) coordinate system, the vertices of a triangle have the following coordinates: \left ( x_{1},y_{1} \right )=\left ( 1,0 \right ); \left ( x_{2},y_{2} \right )=\left ( 2,2 \right ); and \left ( x_{3},y_{3} \right )=\left ( 4,3\right ). The area of the triangle is equal to
A
\frac{3}{2}
B
\frac{3}{4}
C
\frac{4}{5}
D
\frac{5}{2}
Engineering Mathematics   Linear Algebra
Question 5 Explanation: 



Area of triangle is
\begin{aligned} &=\frac{1}{2}\left [ x_{1}\left ( y_{1}-y_{3} \right )+x_{2}\left ( y_{3}-y_{1} \right )+x_{2}\left ( y_{1}-y_{2} \right ) \right ] \\ &=\frac{1}{2}\left [ 1\left ( 2-3 \right )+2\left ( 3-0 \right )+4\left ( 0-2 \right ) \right ] \\ &=\frac{1}{2}\left [ -1+6-8 \right ]=\frac{3}{2} \end{aligned}




There are 5 questions to complete.

Leave a Comment