Extended Master Theorem is very useful while solving recurrence relations with asymptotic notation.
Extended Master Theorem:
If the recurrence is of the form
T(n)=aT(\frac{n}{b}) + \Theta (n^{k} \log^{p}n)
where, a\geq 1, b>1, k\geq 0
and p is a real number.
- If a>b^{k} then
T(n)=\Theta(n^{\log_{b}^{a}})
- If a>b^{k} then
- If p > -1 then
T(n)=\Theta(n^{\log_{b}^{a}} \log^{p+1}n) - If p = -1 then
T(n)=\Theta(n^{\log_{b}^{a}} \log \log n) - If p < -1 then
T(n)=\Theta(n^{\log_{b}^{a}} )
- If p > -1 then
- If a<b^{k} then
- If p \geq 0 then
T(n)=\Theta(n^k \log ^p n) - If p < 0 then
T(n)=O(n^k )
- If p \geq 0 then