GATE CSE 2008


Question 1
\lim_{x\rightarrow \infty }\frac{x-sin x}{x+cos x} equals
A
1
B
-1
C
\infty
D
-\infty
Engineering Mathematics   Calculus
Question 2
If P, Q, R are subsets of the universal set U, then (P\cap Q\cap R)\cup (P^{C} \cap Q \cap R)\cup Q^{C} \cup R^{C} is
A
Q^{C} \cup R^{C}
B
P \cup Q^{C} \cup R^{C}
C
p^{C}\cup Q^{C} \cup R^{C}
D
U
Discrete Mathematics   Set Theory


Question 3
The following system of equations
x_{1}+x_{2}+2x_{3}=1
x_{1}+2x_{2}+3x_{3}=2
x_{1}+4x_{2}+\alpha x_{3}=4
has a unique solution. The only possible value(s) for \alpha is/are
A
0
B
either 0 or 1
C
one of 0, 1 or -1
D
any real number other than 5
Engineering Mathematics   Linear Algebra
Question 4
In the IEEE floating point representation the hexadecimal value 0x00000000 corresponds to
A
The normalized value 2^{-127}
B
The normalized value 2^{-126}
C
The normalized value +0
D
The special value +0
Digital Logic   Number System
Question 5
In the Karnaugh map shown below, x denotes a don't care term. What is the minimal form of the function represented by the Karnaugh map?
A
\bar{b}\cdot \bar{d}+\bar{a}\cdot \bar{d}
B
\bar{a}\bar{b}+\bar{b}\cdot \bar{d}+\bar{a}b\cdot \bar{d}
C
\bar{b}\cdot \bar{d}+\bar{a}b\cdot \bar{d}
D
\bar{a}\bar{b}+\bar{b}\cdot \bar{d}+\bar{a}\cdot \bar{d}
Digital Logic   Boolean Algebra




There are 5 questions to complete.

Leave a Comment