Question 1 |
In the circuit shown below, the current i flowing through 200 \Omega resistor is ____ m A (rounded off to two decimal places).


1.36 | |
0.84 | |
2.36 | |
3.54 |
Question 1 Explanation:
By applying source transformation,

Apply nodal at node V_{A},
\begin{aligned} \frac{V_{A}-2}{2 \mathrm{k} \Omega}+\frac{V_{A}}{2 \mathrm{k} \Omega}+\frac{V_{A}+1}{1.2 \mathrm{k} \Omega} & =1 \mathrm{~mA} \\ V_{A}\left[\frac{1}{2}+\frac{1}{2}+\frac{1}{1.2}\right] & =1+\frac{2}{2}-\left(\frac{1}{1.2}\right) \\ V_{A} & =0.636 \mathrm{~V} \end{aligned}
The current through 200 \Omega resistor,
\begin{aligned} & i=\frac{V_{A}+1}{1.2 \mathrm{k} \Omega}=\frac{0.636+1}{1.2} \\ & i=1.36 \mathrm{~mA} \end{aligned}

Apply nodal at node V_{A},
\begin{aligned} \frac{V_{A}-2}{2 \mathrm{k} \Omega}+\frac{V_{A}}{2 \mathrm{k} \Omega}+\frac{V_{A}+1}{1.2 \mathrm{k} \Omega} & =1 \mathrm{~mA} \\ V_{A}\left[\frac{1}{2}+\frac{1}{2}+\frac{1}{1.2}\right] & =1+\frac{2}{2}-\left(\frac{1}{1.2}\right) \\ V_{A} & =0.636 \mathrm{~V} \end{aligned}
The current through 200 \Omega resistor,
\begin{aligned} & i=\frac{V_{A}+1}{1.2 \mathrm{k} \Omega}=\frac{0.636+1}{1.2} \\ & i=1.36 \mathrm{~mA} \end{aligned}
Question 2 |
Consider the circuit shown in the figure. The current I flowing through the 10\Omega resistor is _________.


1A | |
0A | |
0.1A | |
-0.1A |
Question 2 Explanation:
Here, there is no any return closed path for Current (I) . Hence I=0
Current always flow in loop.
Current always flow in loop.
Question 3 |
The current I in the circuit shown is ________






1.25 \times 10^{-3}A | |
0.75 \times 10^{-3}A | |
-0.5 \times 10^{-3}A | |
1.16 \times 10^{-3}A |
Question 3 Explanation:


Applying Nodal equation at Node-A
\begin{aligned} \frac{V_A}{2k}+\frac{V_A-5}{2k}&=10^{-3}\\ \Rightarrow 2V_A-5&=2k \times 10^{-3}\\ V_A&=3.5V\\ Again,&\\ I&=\frac{5-V_A}{2k}\\ &=\frac{5-3.5}{2k}\\ &=0.75 \times 10^{-3}A \end{aligned}
Question 4 |
Consider the circuit shown in the figure.


The value of v_{0} (rounded off to one decimal place) is _________ V.


The value of v_{0} (rounded off to one decimal place) is _________ V.
0.5 | |
0.8 | |
2 | |
1 |
Question 4 Explanation:


Write KVL equation first loop,
\begin{aligned} V_{o}-4+1\left(V_{o}+2\right) &=0 \\ V_{o} &=1 \mathrm{~V} \end{aligned}
Question 5 |
Consider the circuit shown in the figure.


The current I flowing through the 7\:\Omega resistor between P and Q (rounded off to one decimal place) is ________ A.


The current I flowing through the 7\:\Omega resistor between P and Q (rounded off to one decimal place) is ________ A.
0.2 | |
0.5 | |
0.8 | |
1.4 |
Question 5 Explanation:
Redraw the circuit,
\begin{aligned} 3 \Omega \;||\; 6 \Omega&=2 \Omega \\ 2 \Omega \;||\; 2 \Omega&=1 \Omega \\ \qquad I&=5 \times \frac{1}{10}=0.5 \mathrm{~A} \end{aligned}


\begin{aligned} 3 \Omega \;||\; 6 \Omega&=2 \Omega \\ 2 \Omega \;||\; 2 \Omega&=1 \Omega \\ \qquad I&=5 \times \frac{1}{10}=0.5 \mathrm{~A} \end{aligned}


There are 5 questions to complete.