GATE EC 2014 SET-2

Question 1
The determinant of matrix A is 5 and the determinant of matrix B is 40. The determinant of matrix AB is ______.
A
200
B
100
C
50
D
45
Engineering Mathematics   Linear Algebra
Question 1 Explanation: 
Determinant of A=5
Determinant of B=40
Determinant of AB=|A||B|
\begin{array}{l} \quad=5 \times 40 \\ \quad=200 \end{array}
Question 2
Let X be a random variable which is uniformly chosen from the set of positive odd numbers less than 100. The expectation, E [X], is _____.
A
100
B
50
C
25
D
10
Engineering Mathematics   Probability and Statistics
Question 2 Explanation: 
E[X]=\frac{1+2+3+\cdots 99}{50}=\frac{2500}{50}=50
Question 3
For 0\leq t \leq \infty , the maximum value of the function f(t) =e^{-t}-2e^{-2t} occurs at
A
t=log_{e}4
B
t=log_{e}2
C
t=0
D
t=log_{e}8
Engineering Mathematics   Calculus
Question 3 Explanation: 
\begin{aligned} f(t)&=e^{-t}-2 e^{-2 t} \\ f^{\prime}(t)&=-e^{-t}+4 e^{-2 t} \\ \text{For maximum value} &P(t)=0 \\ f^{\prime}(t)&=0=-e^{-t}+4 e^{-2 t} \\ \Rightarrow \quad 4 e^{-2 t}&=e^{t} \\ 4 e^{t}&=1 \\ \therefore \quad t&=\log _{e} 4 \end{aligned}
Question 4
The value of
\lim_{x\rightarrow \infty }(1+\frac{1}{x})^{x}
is
A
ln 2
B
1
C
e
D
\infty
Engineering Mathematics   Calculus
Question 4 Explanation: 
\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e^{\lim _{x \rightarrow \infty} \frac{1}{x} \cdot x}=e^{1}=e
Question 5
If the characteristic equation of the differential equation
\frac{d^{2}y}{dx^{2}}+2\alpha \frac{dy}{dx}+y=0
has two equal roots, then the values of a are
A
\pm 1
B
0,0
C
\pm j
D
\pm 1/2
Engineering Mathematics   Differential Equations
Question 5 Explanation: 
\frac{d^{2} y}{d x^{2}}+2 \alpha\frac{d y}{d x}+y=0
The characteristic equation is given as
\begin{aligned} \left(m^{2}+2(x)+1\right) &=0 \\ m_{1}, m_{2} &=\frac{-2 x_{1} \pm \sqrt{4 x^{2}-4}}{2} \end{aligned}\\ \text{since both roots are equal i.e.} \\ \begin{aligned} m_{1}=& m_{2} \\ \frac{-2 \alpha+\sqrt{4 \alpha^{2}-4}}{2} &=\frac{-2\alpha \cdot-\sqrt{4 a^{2}-4}}{2} \\ \sqrt{4\left(1^{2}-4\right.} &=-\sqrt{4 c^{2}-4} \\ 2 \sqrt{4 c^{2}-4} &=0 \\ 4 \alpha^{2}-4 &=0 \\ \alpha^{2} &=1 \\ \alpha &=\pm 1 \end{aligned}
Question 6
Norton's theorem states that a complex network connected to a load can be replaced with an equivalent impedance
A
in series with a current source
B
in parallel with a voltage source
C
in series with a voltage source
D
in parallel with a voltage source
Network Theory   Network Theorems
Question 6 Explanation: 
Norton's theorem states that a complex network connected to a load can be replaced with an equivalent impedance in parallel with a current source


Question 7
In the figure shown, the ideal switch has been open for a long time. If it is closed at t = 0, then the magnitude of the current (in mA) through the 4 k\Omega resistance at t = 0^{+} is _____.

A
0.75
B
1.25
C
0.5
D
1.5
Network Theory   Transient Analysis
Question 7 Explanation: 
At steady state t = 0_{-}


\begin{aligned} \therefore V_{c}(0) &=V_{c}\left(0^{+}\right)=5 \mathrm{V} \\ I_{L}\left(0^{-}\right) &=I_{L}\left(0^{+}\right)=1 \mathrm{mA} \end{aligned}
At, t=0, switch get closed



Thus, the current through 4\Omega resistance is
I=\frac{5}{4 \times 10^{3}}=1.25 \mathrm{mA}
Question 8
A silicon bar is doped with donor impurities N_{D}=2.25\times10^{15} atom/cm^{3}. Given the intrinsic carrier concentration of silicon at T = 300 K is n_{i}=1.5\times10^{10}cm^{-3}. Assuming complete impurity ionization, the equilibrium election and hole concentrations are
A
n_{0}=1.5 \times 10^{16}cm^{-3}, p_{0}=1.5 \times 10^{5}cm^{-3}
B
n_{0}=1.5 \times 10^{10}cm^{-3}, p_{0}=1.5 \times 10^{15}cm^{-3}
C
n_{0}=2.25 \times 10^{15}cm^{-3}, p_{0}=1.5 \times 10^{10}cm^{-3}
D
n_{0}=2.25 \times 10^{15}cm^{-3}, p_{0}=1 \times 10^{5}cm^{-3}
Electronic Devices   Basic Semiconductor Physics
Question 8 Explanation: 
since N_{D} \gt \gt n_{i}
therefore equilibrium electron concentration is
n \simeq N_{D}=2.25 \times 10^{15} \mathrm{cm}^{-3}
And equilibrium hole concentration is given by mass action law
p=\frac{n_{i}^{2}}{N_{D}}=\frac{\left(1.5 \times 10^{10}\right)^{2}}{2.25 \times 10^{15}}=1 \times 10^{5} \mathrm{cm}^{-3}
Question 9
An increase in the base recombination of a BJT will increase
A
the common emitter dc current gain \beta
B
the breakdown voltage BV_{CEO}
C
the unity-gain cut-off frequency f_{T}
D
the transconductance g_{m}
Analog Circuits   BJT Analysis
Question 10
In CMOS technology, shallow P-well or N -well regions can be formed using
A
low pressure chemical vapour deposition
B
low energy sputtering
C
low temperature dry oxidation
D
low energy ion-implantation
Electronic Devices   IC Fabrication
Question 10 Explanation: 
Ion implanation/diffusion is used for well implantation.
There are 10 questions to complete.
Like this FREE website? Please share it among all your friends and join the campaign of FREE Education to ALL.