Question 1 |
A current controlled current source (CCCS) has an input impedance of 10 \Omega and output impedance of 100 k\Omega. When this CCCS is used in a negative feedback closedloop with a loop gain of 9, the closed loop output impedance is
10\Omega | |
100\Omega | |
100k\Omega | |
1000k\Omega |
Question 1 Explanation:
"CCCS" (Current controlled current source amplifier)
Given, Z_0=100k\Omega
Loop gain, A\beta =9
Z_{0F}=Z_0[1+A\beta ] \;\;\;(\text{High impedance CS})
=100k\Omega [1+9]
=100k\Omega \times 10
=1000k\Omega
Given, Z_0=100k\Omega
Loop gain, A\beta =9
Z_{0F}=Z_0[1+A\beta ] \;\;\;(\text{High impedance CS})
=100k\Omega [1+9]
=100k\Omega \times 10
=1000k\Omega
Question 2 |
A hysteresis type TTL inverter is used to realize an oscillator in the circuit shown
in the figure.
If the lower and upper trigger level voltages are 0.9 V and 1.7 V, the period (in ms), for which output is LOW, is _____.

If the lower and upper trigger level voltages are 0.9 V and 1.7 V, the period (in ms), for which output is LOW, is _____.
0.32 | |
0.63 | |
0.82 | |
0.98 |
Question 2 Explanation:

Discharging curve,
V_c(t)=0-(0-1.7)e^{-t/RC}
At, t=T_2
V_c(t)=0.9V
0.9=1.7e^{-t/RC}
0.63=T_2
T_2=0.63\;ms
Question 3 |
An oscillator circuit using ideal op-amp and diodes is shown in the figure.
The time duration for +ve part of the cycle is \Delta t_{1} and for -ve part is \Delta t_{2}. The value of e^{\frac{\Delta t_{1}-\Delta t_{2}}{RC}} will be ______.

The time duration for +ve part of the cycle is \Delta t_{1} and for -ve part is \Delta t_{2}. The value of e^{\frac{\Delta t_{1}-\Delta t_{2}}{RC}} will be ______.
0.6 | |
0.8 | |
2 | |
2.4 |
Question 3 Explanation:

This circuit is a stable multivibrator (or) free running oscillator.
When V_0=+V_{sat}
V_{UPT}=V_{sat}\times \frac{1k\Omega }{1k\Omega +3k\Omega } = \frac{V_{sat}}{4}
When, V_0=-V_{sat}
V_{LTP}=V_{sat}\times \frac{1k\Omega }{1k\Omega +1k\Omega }=\frac{-V_{sat}}{2}

V_c=V_{final}+(V_{inital}-V_{final})e^{-t/RC}
In time t=\Delta t_1
V_c=V_{UTP}; V_{initial}=V_{LTP}; V_{final}=+V_{sat}
V_{UTP}=V_{sat}+(V_{LTP}-V_{sat})e^{-\Delta t_1/RC}
\frac{V_{sat}}{4}=V_{sat}+\left ( -\frac{V_{sat}}{2}-V_{sat} \right )e^{-\Delta t_1/RC}
V_{sat}\left ( -1+\frac{1}{4} \right )=-V_{sat}\left ( \frac{1}{2}+1 \right )e^{-\Delta t_1/RC}
\left (1-\frac{1}{4} \right )=\left ( \frac{1}{2}+1 \right )e^{-\Delta t_1/RC}
\frac{3}{4}=\frac{3}{2}e^{-\Delta t_1/RC}
e^{\Delta t_1/RC}=2\;\;....(i)
In time t=\Delta t_2
V_c=V_{LTP}; V_{initial}=V_{UTP}; V_{final}=-V_{sat}
V_{LTP}=-V_{sat}+(V_{UTP}+V_{sat})e^{-\Delta t_2/RC}
-\frac{V_{sat}}{2}=-V_{sat}+\left ( \frac{V_{sat}}{4}+V_{sat} \right )e^{-\Delta t_2/RC}
\left (1-\frac{1}{2} \right )V_{sat}=V_{sat}\left (1+ \frac{1}{4} \right )e^{-\Delta t_2/RC}
\frac{1}{2}= \frac{5}{4}e^{-\Delta t_2/RC}
e^{\Delta t_2/RC}=\frac{5}{2}\;\;....(ii)
From equation (i) and (ii),
\frac{e^{\Delta t_1/RC}}{e^{\Delta t_2/RC}}
=e^{(\Delta t_1-\Delta t_2)/RC}
=\frac{2}{5/2}=\frac{4}{5}=0.8
Question 4 |
In the Wien Bridge oscillator circuit shown in figure, the bridge is balanced when


\frac{R_{3}}{R_{4}}=\frac{R_{1}}{R_{2}},\; \; \omega =\frac{1}{\sqrt{R_{1}C_{1}R_{2}C_{2}}} | |
\frac{R_{2}}{R_{1}}=\frac{C_{2}}{C_{1}},\; \; \omega =\frac{1}{R_{1}C_{1}R_{2}C_{2}} | |
\frac{R_{3}}{R_{4}}=\frac{R_{1}}{R_{2}}+\frac{C_{2}}{C_{1}},\; \; \omega =\frac{1}{\sqrt{R_{1}C_{1}R_{2}C_{2}}} | |
\frac{R_{3}}{R_{4}}+\frac{R_{1}}{R_{2}}=\frac{C_{2}}{C_{1}},\; \; \omega =\frac{1}{R_{1}C_{1}R_{2}C_{2}} |
Question 4 Explanation:
\frac{R_3}{R_4}=\frac{R_1}{R_2}+\frac{C_2}{C_1}
\omega =\frac{1}{\sqrt{R_1R_2C_1C_2}}
\omega =\frac{1}{\sqrt{R_1R_2C_1C_2}}
Question 5 |
In the feedback network shown below, if the feedback factore k is increased, then the


The input impedance increases and output impedance decreases | |
The input impedance increases and output impedance also increases | |
The input impedance decreases and output impedance also decreases | |
The input impedance decreases and output impedance increases |
Question 5 Explanation:
The given configuration is a voltage-series feedback configuration.
So, the input impedance increases
R_{if}=R_i(1+A_o k)
So, the output impedance decreases
R_{of}=\frac{R_o}{1+A_o k}
So, the input impedance increases
R_{if}=R_i(1+A_o k)
So, the output impedance decreases
R_{of}=\frac{R_o}{1+A_o k}
There are 5 questions to complete.