Question 1 |
Neglecting the delays due to the logic gates in the circuit shown in figure, the decimal equivalent of the binary sequence [ABCD] of initial logic states, which will not change with clock, is


4 | |
8 | |
16 | |
32 |
Question 1 Explanation:
Redraw the circuit :

From circuit :
\begin{array}{c|ccc|cccc} & & & &\overline{\mathrm{Q}_{2}} & \mathrm{Q}_{2} & \overline{\mathrm{Q}}_{1} & \mathrm{Q}_{1} \oplus \mathrm{Q}_{2} \\ \mathrm{CLK} & \mathrm{D} & \mathrm{Q}_{1} & \mathrm{Q}_{0} & \mathrm{~A} & \mathrm{~B} & \mathrm{C} & \mathrm{D} \\ \hline 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ \hline \end{array}
\therefore \quad A B C D=(1000)_{2}=(8)_{10}

From circuit :
\begin{array}{c|ccc|cccc} & & & &\overline{\mathrm{Q}_{2}} & \mathrm{Q}_{2} & \overline{\mathrm{Q}}_{1} & \mathrm{Q}_{1} \oplus \mathrm{Q}_{2} \\ \mathrm{CLK} & \mathrm{D} & \mathrm{Q}_{1} & \mathrm{Q}_{0} & \mathrm{~A} & \mathrm{~B} & \mathrm{C} & \mathrm{D} \\ \hline 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ \hline \end{array}
\therefore \quad A B C D=(1000)_{2}=(8)_{10}
Question 2 |
The maximum clock frequency in MHz of a 4-stage ripple counter, utilizing flipflops, with each flip-flop having a propagation delay of 20 ns, is ___________.
(round off to one decimal place)
15.5 | |
20.4 | |
12.5 | |
8.6 |
Question 2 Explanation:
f_{max}=\frac{1}{nt_p}=\frac{1}{4 \times 20 \times 10^{-9}}=12.50MHz
Question 3 |
A MOD 2 and a MOD 5 up-counter when cascaded together results in a MOD ______
counter. (in integer)
5 | |
10 | |
50 | |
25 |
Question 3 Explanation:
Overall MOD = 2 x 5 = 10
Question 4 |
A 16-bit synchronous binary up-counter is clocked with a frequency f_{\text{CLK}}.The two most significant bits are \text{OR-ed} together to form an output Y. Measurements show that Y is periodic, and the duration for which Y remains high in each period is \text{24 ms}. The clock frequency f_{\text{CLK}} is ___________\text{MHz}. (Round off to 2 decimal places.)
4.12 | |
2.05 | |
6.08 | |
3.25 |
Question 4 Explanation:

y = 1 for 24 m sec
\begin{array}{llcccc} & & Q_{15} & Q_{14} & \ldots \ldots & Q_{0} \\ y=1 & \text { Starts at } & 0100 & 0000 & 0000 & 0000 \\ y=1 & \text { Ends at } & 1111 & 1111 & 1111 & 1111 \end{array}
Total number of states for which y=1 is 2^{16}-2^{14}
\begin{aligned} \text { Time is }\left(2^{16}-2^{14}\right) T &=24 \mathrm{msec} \\ f &=\frac{1}{T}=2.05 \mathrm{MHz} \end{aligned}
Question 5 |
A sequence detector is designed to detect precisely 3 digital inputs, with overlapping
sequences detectable. For the sequence (1,0,1) and input data (1,1,0,1,0,0,1,1,0,1,0,1,1,0):
what is the output of this detector?
what is the output of this detector?
1,1,0,0,0,0,1,1,0,1,0,0 | |
0,1,0,0,0,0,0,1,0,1,0,0 | |
0,1,0,0,0,0,0,1,0,1,1,0 | |
0,1,0,0,0,0,0,0,1,0,0,0 |
Question 5 Explanation:
Given overlapping sequence input data = 11010011010110
It will give output 1 when 101 is detected.
\begin{aligned} 110 - 0\\ 101 - 1\\ 010 - 0\\ 100 - 0\\ 001 - 0\\ 011 - 0\\ 110 - 0\\ 101 - 1\\ 010 - 0\\ 101 - 1\\ 011 - 0\\ 110 - 0\\ \end{aligned}
So, output = 010000010100
It will give output 1 when 101 is detected.
\begin{aligned} 110 - 0\\ 101 - 1\\ 010 - 0\\ 100 - 0\\ 001 - 0\\ 011 - 0\\ 110 - 0\\ 101 - 1\\ 010 - 0\\ 101 - 1\\ 011 - 0\\ 110 - 0\\ \end{aligned}
So, output = 010000010100
There are 5 questions to complete.