GATE ME 2003


Question 1
\lim_{x\rightarrow 0}\frac{\sin^{2}x}{x} is equal to
A
0
B
\infty
C
1
D
-1
Engineering Mathematics   Calculus
Question 1 Explanation: 
\lim_{x \to 0}frac{\sin^2 x}{x}
=\lim_{x \to 0}\left (frac{\sin x}{x} \right )^2 x
=1 \times 0 =0
Question 2
The accuracy of Simpson's rule quadrature for a step size h is
A
O(h^{2})
B
O(h^{3})
C
O(h^{4})
D
O(h^{5})
Engineering Mathematics   Numerical Methods


Question 3
For the matrix \begin{bmatrix} 4 & 1\\ 1 & 4 \end{bmatrix} the Eigen values are
A
3 and -3
B
-3 and -5
C
3 and 5
D
5 and 0
Engineering Mathematics   Linear Algebra
Question 3 Explanation: 
\small A=\left[\begin{array}{ll}4 & 1 \\ 1 & 4\end{array}\right]
\text{Now }\quad|A-\lambda I|=0
\text{where} \quad \lambda= \text{ eigen value}
\therefore \quad\left|\begin{array}{cc}4-\lambda & 1 \\ 1 & 4-\lambda \\ (4-\lambda)^{2}-1 & =0\end{array}\right|=0
\text{or,} \quad(4-\lambda)^{2}-(1)^{2}=0
\text{or,} (4-\lambda+1)(4-\lambda-1)=0
\text{or,} \quad(5-\lambda)(3-\lambda)=0
\therefore \quad \lambda=3,5
Question 4
The second moment of a circular area about the diameter is given by (D is the diameter).
A
\frac{\pi D^{4}}{4}
B
\frac{\pi D^{4}}{16}
C
\frac{\pi D^{4}}{32}
D
\frac{\pi D^{4}}{64}
Strength of Materials   Bending of Beams
Question 4 Explanation: 
Polar moment of inertia perpendicular to the plane of paper
I_{p}=\frac{\pi D^{4}}{32}


By 'Perpendicular Axis" theorem
\begin{aligned} I_{x x}+I_{y y} &=I_{p} \quad\left[\because I_{x x}=I_{y y}\right] \\ 2 I_{x x} &=\frac{\pi D^{4}}{32} \\ \therefore \quad I_{x x} &=I_{y y}=\frac{\pi D^{4}}{64} \end{aligned}
Question 5
A concentrated load of P acts on a simply supported beam of span L at a distance \frac{L}{3} form the left support. The bending moment at the point of application of the load is given by
A
\frac{PL}{3}
B
\frac{2PL}{3}
C
\frac{PL}{9}
D
\frac{2PL}{9}
Strength of Materials   Bending of Beams
Question 5 Explanation: 


Taking moment about A, we have
\begin{aligned} R_{B} \times L &=P \times \frac{L}{3} \\ \therefore \quad R_{B} &=\frac{P}{3}\\ \text{and }\quad R_{A}=P-R_{B}&=P-\frac{P}{3}\\ R_{A}&=\frac{2 P}{3} \end{aligned}
Bending moment at the point of application of load,
M=\frac{2 P}{3} \times \frac{L}{3}=\frac{2 P L}{9}




There are 5 questions to complete.

Leave a Comment