# GATE Mechanical Engineering 2021 SET-1

 Question 1
If $y(x)$ satisfies the differential equation

$(\sin x)\frac{dy}{dx}+y \cos x =1$

subject to the condition $y(\pi /2)=\pi /2$, then $y(\pi /6)$ is
 A 0 B $\frac{\pi}{6}$ C $\frac{\pi}{3}$ D $\frac{\pi}{2}$
Engineering Mathematics   Differential Equations
Question 1 Explanation:
\begin{aligned} \frac{d y}{d x}+y \cot x&=\text{cosec} x\\ 1.F. \qquad&=e^{\int \cot x d x}=e^{\log \sin x}=\sin x\\ \Rightarrow \quad y(\sin x)&=\int \text{cosec} x \sin x d x+c\\ \Rightarrow \qquad y \sin x&=x+c\\ \Rightarrow \qquad \frac{\pi}{2} \sin \frac{\pi}{2} & =\frac{\pi}{2}+c \\ \Rightarrow \qquad \frac{\pi}{2} & =\frac{\pi}{2}+c \quad \Rightarrow c=0 \\ \Rightarrow \qquad y \sin x & =x\\ \Rightarrow \qquad y \sin \frac{\pi}{6}&=\frac{\pi}{6}\\ \Rightarrow \qquad y\left(\frac{1}{2}\right) &=\frac{\pi}{6} \\ \Rightarrow y &=\frac{\pi}{3} \end{aligned}
 Question 2
The value of $\lim_{x \to 0}\left ( \frac{1- \cos x}{x^2} \right )$ is
 A $\frac{1}{4}$ B $\frac{1}{3}$ C $\frac{1}{2}$ D 1
Engineering Mathematics   Calculus
Question 2 Explanation:
\begin{aligned} \lim _{x \rightarrow 0}\left(\frac{1-\cos x}{x^{2}}\right)&=? \;\;\;\;\;\;\left(\frac{0}{0} \text { form }\right) \\ \text { Applying } L \cdot H \text { rule } & =\lim _{x \rightarrow 0} \frac{\sin x}{2 x}\left(\frac{0}{0}\right)=\lim _{x \rightarrow 0} \frac{\cos x}{2}=\frac{1}{2} \end{aligned}

 Question 3
The Dirac-delta function $(\delta (t-t_0)) \text{ for }t,t_0 \in \mathbb{R},$ has the following property

$\int_{a}^{b}\varphi (t)\delta (t-t_0)dt=\left\{\begin{matrix} \varphi (t_0) & a \lt t_0 \lt b\\ 0 &\text{otherwise} \end{matrix}\right.$

The Laplace transform of the Dirac-delta function $\delta (t-a)$ for $a \gt 0$;
$\mathcal{L} (\delta (t-a))=F(s)$ is
 A 0 B $\infty$ C $e^{sa}$ D $e^{-sa}$
Engineering Mathematics   Differential Equations
Question 3 Explanation:
\begin{aligned} \because \qquad \int_{0}^{-} f(t) \delta(t-a) d t&=f(a) \\ \therefore \qquad L\{\delta(t-a)\}&=\int_{0}^{-} e^{-s t} \delta(t-a) d t=e^{-a s} \end{aligned}
 Question 4
The ordinary differential equation $\frac{dy}{dt}=-\pi y$ subject to an initial condition $y(0)=1$ is solved numerically using the following scheme:

$\frac{y(t_{n+1})-y(t_n)}{h}=-\pi y(t_n)$

where $h$ is the time step, $t_n=nh,$ and $n=0,1,2,...$. This numerical scheme is stable for all values of $h$ in the interval.
 A $0 \lt h \lt \frac{2}{\pi}$ B $0 \lt h \lt 1$ C $0 \lt h \lt \frac{\pi}{2}$ D for all $h \gt 0$
Engineering Mathematics   Differential Equations
Question 4 Explanation:
\begin{aligned} \frac{y\left(t_{n+1}\right)-y\left(t_{n}\right)}{h} &=-\pi y\left(t_{n}\right) \\ y_{n+1} &=-\pi / y_{n}+y_{n}=(-\pi h+1) y_{n} \end{aligned}
It is recursion relation between $y_{n+1}$ and $y_{n}$
So solution will be stable if
\begin{aligned} |-\pi h+1| & \lt 1 \\ -1 \lt -\pi h+1 & \lt 1 \\ -2 \lt -\pi h & \lt 0 \\ 0 & \lt \pi h \lt 2 \\ 0 & \lt h \lt \frac{2}{\pi} \end{aligned}
Therefore option (A) is correct.
 Question 5
Consider a binomial random variable $X$. If $X_1,X_2,..., X_n$ are independent and identically distributed samples from the distribution of $X$ with sum $Y=\sum_{i=1}^{n}X_i$, then the distribution of $Y$ as $n\rightarrow \infty$ can be approximated as
 A Exponential B Bernoulli C Binomial D Normal
Engineering Mathematics   Probability and Statistics

There are 5 questions to complete.

### 1 thought on “GATE Mechanical Engineering 2021 SET-1”

1. Great job. Can you add the marks for each question so we can differentiate between 2- and 1-mark questions?