Question 1 |

Let G be a connected undirected weighted graph. Consider the following two statements.

S1: There exists a minimum weight edge in G which is present in every minimum spanning tree of G.

S2: If every edge in G has distinct weight, then G has a unique minimum spanning tree.

Which one of the following options is correct?

S1: There exists a minimum weight edge in G which is present in every minimum spanning tree of G.

S2: If every edge in G has distinct weight, then G has a unique minimum spanning tree.

Which one of the following options is correct?

Both S1 and S2 are true | |

S1 is true and S2 is false | |

S1 is false and S2 is true | |

Both S1 and S2 are false |

Question 1 Explanation:

Question 2 |

Let H be a binary min-heap consisting of n elements implemented as an array. What is the worst case time complexity of an optimal algorithm to find the maximum element in H?

\Theta (1) | |

\Theta (\log n) | |

\Theta ( n) | |

\Theta (n \log n) |

Question 2 Explanation:

Question 3 |

Consider the following ANSI C program:

```
int main () {
Integer x;
return 0;
}
```

Which one of the following phases in a seven-phase C compiler will throw an error?Lexical analyzer | |

Syntax analyzer | |

Semantic analyzer | |

Machine dependent optimizer |

Question 3 Explanation:

Question 4 |

The format of the single-precision floating point representation of a real number as per the IEEE 754 standard is as follows:

\begin{array}{|c|c|c|} \hline \text{sign} & \text{exponent} & \text{mantissa} \\ \hline \end{array}

Which one of the following choices is correct with respect to the smallest normalized positive number represented using the standard?

\begin{array}{|c|c|c|} \hline \text{sign} & \text{exponent} & \text{mantissa} \\ \hline \end{array}

Which one of the following choices is correct with respect to the smallest normalized positive number represented using the standard?

exponent = 00000000 and mantissa = 0000000000000000000000000 | |

exponent = 00000000 and mantissa = 0000000000000000000000001 | |

exponent = 00000001 and mantissa = 0000000000000000000000000 | |

exponent = 00000001 and mantissa = 0000000000000000000000001 |

Question 4 Explanation:

Question 5 |

Which one of the following circuits implements the Boolean function given below?

f(x,y,z) = m_0+m_1+m_3+m_4+m_5+m_6

where m_i is the i^{th} minterm.

f(x,y,z) = m_0+m_1+m_3+m_4+m_5+m_6

where m_i is the i^{th} minterm.

A | |

B | |

C | |

D |

Question 5 Explanation:

There are 5 questions to complete.